MDS matrices over small fields: A proof of the GM-MDS conjecture
نویسنده
چکیده
The GM-MDS conjecture of Dau et al. (ISIT 2014) speculates that the MDS condition, which guarantees the existence of MDS matrices with a prescribed set of zeros over large fields, is in fact sufficient for existence of such matrices over small fields. We prove this conjecture.
منابع مشابه
Lightweight 4x4 MDS Matrices for Hardware-Oriented Cryptographic Primitives
Linear diffusion layer is an important part of lightweight block ciphers and hash functions. This paper presents an efficient class of lightweight 4x4 MDS matrices such that the implementation cost of them and their corresponding inverses are equal. The main target of the paper is hardware oriented cryptographic primitives and the implementation cost is measured in terms of the required number ...
متن کاملConstruction of MDS self-dual codes from orthogonal matrices
In this paper, we give algorithms and methods of construction of self-dual codes over finite fields using orthogonal matrices. Randomization in the orthogonal group, and code extension are the main tools. Some optimal, almost MDS, and MDS self-dual codes over both small and large prime fields are constructed.
متن کاملOptimum Linear Codes with Support Constraints over Small Fields
We consider the problem of designing optimal linear codes (in terms of having the largest minimum distance) subject to a support constraint on the generator matrix. We show that the largest minimum distance can be achieved by a subcode of a Reed-Solomon code of small field size. As a by-product of this result, we settle the GM-MDS conjecture of Dau et. al. in the affirmative.
متن کاملIACR Transactions on Symmetric Cryptology
Near-MDS matrices provide better trade-offs between security and efficiency compared to constructions based on MDS matrices, which are favored for hardwareoriented designs. We present new designs of lightweight linear diffusion layers by constructing lightweight near-MDS matrices. Firstly generic n×n near-MDS circulant matrices are found for 5 ≤ n ≤ 9. Secondly , the implementation cost of inst...
متن کاملConstruction and Filtration of Lightweight Formalized MDS Matrices
Zhang Shi-Yi, Wang Yong-juan, Gao Yang, Wang Tao Corresponding author: Wang Yong-juan, E-mail: [email protected] Abstract: The 4 4 MDS matrix over 2 F is widely used in the design of block cipher's linear diffusion layers. However, considering the cost of a lightweight cipher's implementation, the sum of XOR operations of a MDS matrix usually plays the role of measure. During the research on t...
متن کامل